

The American Shale Gas Revolution

Outline

- US oil & gas production & pricing 2000-2011
- Shale gas E & P technology
- US unconventional play overview
- Role of data in success & failure
- Current status, pricing, cost and activity
- Commercial impact
- Look to future
- Latin American activity & other countries

Evolution of US Gas production since 2000

Total US Natural Gas Production by Year Bcfg

- First extracted in Fredonia NY in 1825
- Active R&D in 1970s & 80s
- 2006 1.1 Tcfg shale gas or 5.9% of production, start of trend
- 4,185 shale gas wells completed in 2007
- Production increase 27.4% since 2005
- Many considered it impossible
- Conventional production peaked years ago

Liquids Production Increase Mirrors Gas Trend

- Increase since 2005 is 21.2%
- Unconventional oil leads the charge
- Operators drilling liquids portion of acreage due to low gas prices
- US oil production reaches 23-year high in June 2012 for lower 48
- US projected to pass Saudi Arabia & Russia this decade
- Texas and North Dakota are fastest growing oil producers.
- Onshore production was up 10% in 2011
- Oil imports are declining

Unconventional Hydrocarbon Production Growth

Monthly US Production

Source: DI-Desktop

Henry Hub & WTI – General Price Trends

Henry Hub gas price US\$ Per MMbtu start of year

WTI price US\$ per bbl start of year

Pricing notes and Implications

- Oil and natural gas pricing both historically volatile
- In long to medium term oil price trending upwards
- Natural gas price has plummeted
- Gas pricing increased from May 2012 low of \$1.80 MMbtu.
- Current price around US\$ 3.00 MMbtu

Current Status

- The US currently has an oversupply of natural gas
- US prices widely divergent from Asian/European/Intl markets
- Shale gas drilling at a minimum operators switch to liquids
- Operators losing money/industry moves to consolidation phase

Shale Gas E&P Technology

- Key elements horizontal drilling & fracking
- Steering well through most productive zones
- MWD is important
- Maximum borehole contact with productive part of formation
- Fracking is key, many different techniques

Hydrofracking History & Why

- Conventional fracking begins 1947
- Modern "slick water hydraulic fracturing" starts 1997 Barnett Shale
- George Mitchell "invented" technique
 10 years & US\$ 6 million in research
- Why frack? shale low permeability, horizontal fractures seal naturally
- Injecting proppant keeps fractures open
- Enough pressure to split rock & transport proppant
- Coffee bean & hammer analogy for shale matrix

Fracking Notes & Negatives

- Real time microseismic fracture mapping has become important
- Multistage is the rule & same zones can be fracked repeatedly
- Different kinds: Gasfrac, Simulfrac,
 Zipperfrac
- Expensive & controversial
- Hydrofracking uses 70 to 300 times more water – 1-8 MM gallons
- Safe if well below water table & well maintains casing & cement integrity
- Wastewater disposal problems

Best Practice – Simulfrac, Zipperfrac, and Sequential Frac

- Parallel wellbores
- Fracture stimulated at the same time (simulfrac), in alternating stages (zipperfrac), or sequentially
- Creates an interconnected network of fractures
- May improve well economics due to cost savings

US Unconventional Play Map

US Unconventional Future Predicted Production Profile

Figure 2.17 Potential Production Rate that Could Be Delivered by the Major U.S. Shale Plays up to 2030 — Given 2010 Drilling Rates and Mean Resource Estimates

Unconventional Play Overview - Barnett Shale

- Fort Worth Basin, Texas, first major unconventional play.
- Mississippian age, porosity .5 to 6%
- First horizontal wells 2001, standard by 2003
- EOG typical well 300 Mboe
- 1,220m lateral, cost US\$ 3.3 MM
- Year-end 2007 3.5 Bcfg/d from 7,000 wells
- Horizontal wells Max IP 1.36
 MMcfg/d, almost 2X verticals
- Prod decline 60% yr 1, 30% yr 2, 15% yr 3

Unconventional Play Overview - Eagle Ford

- First production 2006 but main focus initially Austin Chalk
- First true Eagle Ford well by Petrohawk in Hawkville Field, Oct 2008.
- Upper Cretaceous, 30 to 100m thick, good for fracturing, up to 70% calcite
- Lower transgressive layers oil prone, upper regressive layers gas prone
- Activity has shifted from gas to liquids
- Simulfrac good practice for oil (20%) & gas (12%) higher.
- EURs Dry gas 5.6 6.0 Bcf, Wet gas 262 540 Mboe, Oil 138 431 Mboe

Unconventional Play Overview - Bakken

- Mississippian Devonian, includes Upper, Middle, Lower Bakken & Sanish
- Middle Bakken most important, higher perm & porosity between high TOCs
- Middle Bakken overpressured, natural vertical fractures
- First produced in 1953, activity took off in 2004
- Peak leasing 2007-2009, activity still growing
- EUR since 2004 521 Mboe
- Current production -14 MMbo/month, 13 Bcfg/month
- Long laterals > 2,300m are best practice

Unconventional Play Overview - Marcellus

- Middle Devonian low-density black shale, play also includes Huron
- Thickness, thermal maturity, Rome trough, underlying frac barrier
- Reserves Proved 5.4 Tcfg to potential 34 Tcfg
- 132 Marcellus spuds through mid-May 2012
- Average EUR = 7.3 Bcfe
- Average lateral around 1,600m.
- Average wells cost US\$ 6.1 million
- Top wells can produce over 8 MMcfg/d

Data is Critical in US Unconventional E&P

CUM 6 MONTH CREAMING CURVE BY COUNTY BY WELLBORE

- All rocks in the resource play are **NOT** created equal.
- All operators are **NOT** equal.
- All stimulation techniques are **NOT** equally applicable

Creaming Curve Example – Eagle Ford

Data Example – Productive Acreage Grading Barnett Shale

<u>GPA</u>	Acres in Play	<u>%</u>	Cumulative <u>%</u>	Nominal Max Gas/Section	Nominal Min Gas/Section	Nominal Gas In Place	<u>Cumulative</u> <u>NGIP</u>
Α	14,080	0.08%	0.08%	83	74.7	1,826	1,826
В	27,520	0.16%	0.25%	74.7	66.4	3,212	5,038
С	91,520	0.55%	0.79%	66.4	58.1	9,495	14,533
D	303,360	1.81%	2.60%	58.1	49.8	27,539	42,073
D_hl	5,760	0.03%	2.63%	58.1	49.8	523	42,596
D_ml	46,080	0.27%	2.91%	58.1	49.8	4,183	46,779
E	418,560	2.49%	5.40%	49.8	41.5	32,569	79,348
E_hl	46,080	0.27%	5.68%	49.8	41.5	3,586	82,934
E_ml	39,040	0.23%	5.91%	49.8	41.5	3,038	85,971
F	632,320	3.77%	9.68%	41.5	33.2	41,002	126,973
F_hl	16,640	0.10%	9.78%	41.5	33.2	1,079	128,052
F_ml	14,720	0.09%	9.86%	41.5	33.2	955	129,007
G	660,480	3.94%	13.80%	33.2	24.9	34,262	163,269
G_hl	126,080	0.75%	14.55%	33.2	24.9	6,540	169,810
G_ml	134,400	0.80%	15.35%	33.2	24.9	6,972	176,782
Н	1,054,080	6.28%	21.63%	24.9	16.6	41,010	217,792
H_hl	225,280	1.34%	22.97%	24.9	16.6	8,765	226,557
H_ml	301,440	1.80%	24.77%	24.9	16.6	11,728	238,285
1	1,189,760	7.09%	31.86%	16.6	8.3	30,859	269,144
I_hl	1,227,520	7.31%	39.17%	16.6	8.3	31,839	300,983
I_ml	3,008,640	17.93%	57.10%	16.6	8.3	78,037	379,020
J	97,280	0.58%	57.68%	8.3	0	1,262	380,281
J_hl	6,204,800	36.97%	94.65%	8.3	0	80,469	460,750
J_ml	898,560	5.35%	100.00%	8.3	0	11,653	472,403
Basin Total	16784000	1			4,33-		<u> </u>

Source: Drillinginfo, DI Analytics

Lateral Length Impact on Productivity

Natural Gas 2010 Proved Reserves

- Crude oil/condensate 25.2 Bbo
- Wet gas 317.6 Tcfg
- Produced 2 Bbo, 23.2 Tcfg
- Net additions oil/cond 2.9 Bbo or 12.8%
- Net additions wet gas 33.8 Tcfg or 11.9%
- Record setting year breaking 2009 records

Natural Gas Pricing Trends Rig Count

Natural gas spot prices (Henry Hub)

Active US natural gas rig count vs Henry Hub Spot Price

Shale Gas Profitability? Contrarian View

- Controversy over long-run profitability of shale gas production
- Depends on total E&P costs in well lifecycle
- EUR of wells & length of time for production
- Sales price of gas over well lifecycle
- B factor production decline modeling is it accurate?
- Very few shale gas wells have finished entire lifecycle
- Are EURs overstated? –based on long production at low rates
- Some economic modeling shows prices over \$10 MMbtu needed for marginal profitability
- Most contrarian modeling doesn't include liquids

- Power generation shift from coal to natural gas
- Reducing pollution & greenhouse gas emissions
- More expensive renewables on back burner
- Natural gas export permits 3 Tcf already approved refined products export first time since 1949
- Dramatic change to LNG market in North America
- Low natural gas & electric prices help consumers
- Technology revolution in E&P horizontal drilling & fracking
- Petrochemical plants new investment in US, based on gas
- Naptha feedstock replacement by NGL's ethane & propane

Natural Gas in Power Matrix

- April 2012 Natural gas power catches coal both at 32%
- Other factors important besides price
- Gas generation capacity increase
 96% from 2000 -2012
- Since 1990 expanding pipelines, combined cycle technology improves
- Gas-fired plants cheaper to startup
 & shutdown
- CO2 emissions down 4% 2008-2010,
 SO2 & NO2 down 32% & 31%
- CO2 emissions 2006-2011 down 450
 MM tons, more than any country

Industrial & Petrochemical

- Dow Chemical Freeport Tx US\$ 4 billion to expand low ethane price
- 12 other Texas plants advance new petrochem projects
- ExxonMobil, ChevronPhillips, Occidental also plan petrochemical expansion
- Biggest expansion since 1980s, dramatic turnaround from 4 years ago
- Shell major new ethane cracker Beaver Co. Pa
- Methanol, Ethane, Propane, Olefins, (plastics), Ammonia (fertilizer)
 also important
- Revival of US steel new factories Baton Rouge US\$ 3.4 billion, Ohio
- US will not lose competitive advantage until Henry Hub gas price is over US\$ 17 MMbtu

Future Shale Gas Economic Impact

- 2015 US to add 1.5 million jobs
- Contribute US\$ 197 billion to GDP
- Govt revenue US\$ 49 billion
- 2035 2.4 million jobs & US\$ 332 billion GDP
- US\$ 3.2 trillion to be invested from 2010
- Govt revenue 2010 2035 US\$ 1.5 trillion
- Contrarian views no price for reserves
- Is it possible to sustain cheap & plentiful gas?
- Is it cleaner? Leaking methane during frack argument

- Slow the transition to renewable energy
- No gas export cartel (Russia, Iran, Qatar)
- Improvement of trade deficit
- Increase in electric cars and/or CNG vehicles
- Prediction by 2020 US exporting 2-4 Bcfg/d LNG, to begin 2015
- Cleaner air enable retirement of more coal plants
- Easier to meet future greenhouse gas reduction targets
- Gradual evolution to one worldwide LNG market

Shale Gas Around the World What is Different?

- Less mature, lower drilling density, less subsurface data
- Less ability to use existing infrastructure
- Lack of mature service industry
- Inadequate regulatory framework developed
- Geologic risk
- Environmental/political considerations
- Land access

Shale Gas Around the World

- Poland reserve write after initial optimism, 30 wells drilled
- France & Bulgaria banned groundwater pollution fears
- Austria, Hungary exploration started
- UK 200 Tcfg onshore but exploitation questionable
- Offshore North Sea 1,000 Tcfg, very expensive, distant future
- Canada numerous shale plays but mostly in exploratory stage
- China 1,275 Tcfg, world's largest reserves, likely to duplicate US
- India 15th largest reserves but hungry for energy
- Indonesia 574 Tcfg but no development yet
- Brazil 226 Tcfg but more worried about pre-salt development

Argentina Unconventionals

- Argentina 3rd place behind
 China & US shale gas 774 Tcfg
- Neuquen Basin –Vaca Muerta shale leads way
- YPF top operator, 45 VM wells,
 15 producing, no horizontals
- Liquids focus -200-600 bo/d IPs
- Loma la Lata Norte & Loma
 Campana most important fields
- 741 MMbo & over 1 Tcfg resources
- Notable operators, ExxonMobil, Pluspetrol, Total, EOG, Apache, Shell, Tecpetrol
- Apache drills first hz well in Los Molles, (Anticlinal Campamento)

Mexico - Unconventionals

- 4th place shale gas after China, US & Argentina – 681 Tcfg
- Plans big shale push in Tampico-Misantla
 Basin oil rather than gas
- 5 shale integrated field laboratories in Sabinas Basin
- Five basins to be studied for shale potential
- 175 wells, 10,000 sq km 3D seismic, US\$
 2.4 billion expl planned to 2016.
- First horizontal Emergente well, Eagle Ford, US\$ 20 million, 2.9 MMcfg/d IP

Colombia Shale Gas

- 31 unconventional blocks in current bid round with incentives
- 40% royalty reduction, higher price for windfall profits tax
- Most important unconventional basins Eastern Cordillera, Middle & Lower Magdalena, Catatumbo
- ANH P50 uncon prospective resources, 2.22 Bbo, 265 Tcfg
- Ecopetrol goal by 2020 produce 50,000 bo/d
- La Luna & Rosablanca formations most unconventional potential –
 Eagle Ford & Bakken analogues, respectively
- Shell, ExxonMobil, Vetra & Canacol in Middle Magdalena Basin, Nexen (Eastern Cordillera Basin).
- Pacific Rubiales in Lower Magdalena Basin & claims first successful hydraulic fracking

Abundante: Recursos de Shale Gas

Energy Information Administration (EIA)

Región	Shale Gas (TMC)
Europa	18
Norte América	55
Asia	39
Australia	11
África	30
Sudamérica	35
Total Mundo	188
	Υ

International Energy Agency (IEA)

Región	Shale Gas (TMC)
OECD Europa	16
OECD Norte América	55
Asia/ Pacifico	51
Medio Oriente	14
Africa	29
Latinoamérica	35
Total Mundo	204
	Υ

Tanto la EIA como la IEA, estiman similares potenciales recursos de Shale Gas en diferentes regiones del mundo.

7,204 TPC

6,639 TPC

Thoughts and Conclusions

- Most dramatic impact on industry in 50 years.
- Victim of own success on pricing but will reach balance
- Depends on mature industry
- Critics have valid points but problems not insurmountable
- Technology driven play data is crucial in learning curve
- Shale gas reserves make large traditional fields less strategic
- Other parts of world will follow the US but more slowly

Final Thought

- Viva Shale Gas Revolucion Americana
- Muchas Gracias Por Su Atencion